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Abstract—High computational complexity hinders the
widespread usage of neural networks, especially in mobile
devices, which are often the basis of fine-grained localization
technology for ubiquitous health monitoring, context awareness,
and indoor location tracking. In this paper, we present a
binarized recurrent neural network whose weight parameters,
input, and intermediate hidden layer output signals, are
all binary-valued, and require only basic bit logic for the
evaluation and training process. The proposed Binarized
Long Short-Term Memory Network (B-BLSTM-RNN) is
especially suitable for resource-constrained environments
since it replaces either floating or fixed-point arithmetic with
significantly more efficient bitwise operations. The model is
based on a bidirectional Long Short-Term Memory Recurrent
Neural Network (BLSTM-RNN). Designed to take contextual
information into account, the network can process data gathered
from different positions, resulting in a system, that’s invariant
to transformations and distortions of the input patterns. During
the forward pass, the B-BLSTM drastically reduce memory
size and accesses, and replace most arithmetic operations with
bit-wise operations, which is expected to substantially improve
power-efficiency. The binarized network is simple, accurate,
efficient, and works on challenging gesture recognition tasks
using raw MEM data. To validate the effectiveness of the
network we conduct three sets of experiments. We achieved a
classification accuracy with a the proposed network of about
90% which only 2% less than the full-precision network. We
also compare our method with recent methods and outperform
these methods by large margins on the conducted datasets.

Index Terms—Indoor positioning, inertial tracking, dead reck-
oning, deep learning, machine learning

I. INTRODUCTION

Deep Neural Networks (DNNs) have substantially pushed
Artificial Intelligence in a wide range of tasks, including but
not limited to object recognition from images [1], [2], speech
recognition [3], [4] and even Atari and Go games [5], [6].

One field that has yet to benefit from deep learning is
Human Activity Recognition (HAR) in Ubiquitous Computing
(ubicomp). The dominant technical approach in HAR includes
sliding window segmentation of time-series data captured
with body-worn sensors, manually designed feature extraction
procedures, and a wide variety of supervised classification
methods [7]. In many cases, these relatively simple methods
suffer to obtain the impressive recognition accuracies that
neural networks achieved in the last decade.

Although DNNs are extending the state of the art results in
the last decade: they are almost exclusively trained on one or
many very fast and power-hungry Graphic Processing Units

or on industrial-sized clusters [8], [9]. So, while they perform
well on expensive, GPU-based machines or industrial-sized
clusters, they are often unsuitable for smaller devices like cell
phones and embedded electronics. For example, AlexNet [1]
has 61M parameters (249MB of memory) and performs 1.5B
high precision operations to make a prediction. These numbers
are even higher for bigger networks with more parameters that
call for more resources (processing power, memory, battery
time, etc).

Another primary concern that hinders those applications
from being more successful by using deep neural networks
is that they assume an always-on pattern recognition engine
on the device, which will drain the battery fast unless it is
carefully implemented to minimize the use of resources.

The disjunction between these two trends creates a
dilemma when state-of-the-art deep learning algorithms are
designed to be deployed on mobile devices. This paper
makes the following contributions to resolve the problems by
introducing a simple, efficient, and accurate approximations
to BLSTM-RNNs by binarizing the weights and inputs even
in the intermediate layer of the neural network:

• We introduce a method to train and evaluate binarized
BLSTM-RNNs (B-BLSTM-RNN) networks with binary
weights and activations on embedded systems. Our
approach draws on recent successes of BLSTM-RNNs,
that demonstrated a minimal classification error on
indoor localization related topics [10]. Such as step
detection, step length estimation and classification of
different movements to name a few.

• We conduct three sets of experiments, each performed on
an embedded system, which show that it is possible to
train and evaluate a binarized BLSTM-RNN (B-BLSTM-
RNN) that achieve nearly state-of-the-art results.

• We show that during the forward pass (both at run-
time and train-time), binarized BLSTM-RNNs drastically
reduce memory consumption (size and number of ac-
cesses), and replace most arithmetic operations with bit-
wise operations, which potentially lead to a substantial
increase in power-efficiency.

The rest of the paper is organized as follows. Sec. II gives an
overview of related works, followed by a detailed presentation
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of our new method to evaluate and train a recurrent neural net-
work on embedded systems in sec. IV. In sec. IV-B we discuss
the most important implementation issues and conclude with
experiments in sec. V.

II. RELATED WORK

Efficient computational structures for deploying artificial
neural networks have long been studied in the literature. Most
of the effort is focused on training networks whose weights
can be transformed into some quantized representations with a
minimal loss of performance. The different types of networks
are explained below.

Shallow Feed-forward networks: The main idea behind
shallow networks is to train a compact model to approximate
the function learned by a larger, more complex model. For
example, in [11], [12], a single neural network is trained to
mimic a much larger ensemble of models. The idea is based on
the well-known early theoretical work on the representational
capacity of neural nets. It was proven that a network with
a large enough single hidden layer of sigmoid units can
approximate any decision boundary [13]. Empirical work [10],
[14], however, shows that it is difficult to train shallow nets to
be as accurate as deep nets. In [10], [15], the authors show that
deeper models are more competitive than shallow models in
speech acoustic modeling. This method is different from our
approach because we use the standard network architectures,
not a shallow approximation.

Compressing pre-trained deep networks: Pruning redun-
dant, non-informative weights in a previously trained network
reduces the size of the network at inference time. Weight decay
[16] was an early method for pruning a network. Optimal
Brain Damage [17] use the Hessian of the loss function to
prune a network by reducing the number of connections.
Recently Wenlin Chen et al. introduced HashedNets [18] to
reduce the number of parameters by using a low-cost hash
function to randomly group connection weights into hash
buckets, that share a single parameter value. Preetum Nakkiran
[19] compressed an existing fully-trained DNN using a low-
rank approximation of the weights associated with individual
nodes in the first hidden layer by means of a rank-constrained
DNN layer topology. They exploited the fact, that the weights,
corresponding to the first hidden layer of the model, act as
low-level feature detectors, and can thus be considered as
filters. Filters tend to have a simple structure, which makes
them amenable to compression. We are different from these
approaches because we do not use a pre-trained network.

Network binarization: Several methods attempt to binarize
the weights and the activations in neural networks. In [20],
[21], the authors show that an approximation of all convo-
lution operation in a convolutional network using primarily
binary operations could result in a large speedup. In [22]
Philipp Gysel et al. presents a complete model approxima-
tion framework that analyzes a given convolutional neural
network. That transforms the floating point arithmetic into
fixed point arithmetic with respect to numerical resolution
used in representing weights and outputs of convolutional

and fully connected layers. Our method is different from the
mentioned method regarding the binarization method and the
network structure, almost all of the proposed method are
using a convolutional neural network as a basis. However,
convolutional neural networks are difficult to be used in an
activity classification task using MEM data, especially when
using continues raw MEM data.

III. DEEP NEURAL NETWORKS

In this section, we present Binarized-BLSTM-RNN, a novel
variation of the LSTM recurrent neural network with dras-
tically reduced model sizes and memory demands. We first
introduce the standard LSTM-RNN model and describe our
approach to binarize the model using binary weights and
activations to avoid any additional memory and performance
overhead.

A. Deep Recurrent Networks

Deep recurrent networks, most notably those that rely on
Long Short-Term Memory cells (LSTMs) [23], have recently
achieved impressive performances across a variety of scenarios
[24]. Their application to HAR has been explored in various
settings [10]. Neverova et al. [25] investigated a variety of re-
current approaches to identify individuals based on movement
data recorded from their mobile phone on a large dataset.

B. Long-Short Term Memory Networks

LSTM-RNNs are dynamical systems introduced by S.
Hochreiter and J.Schmidhuber [23]. They have been suc-
cessfully applied to a number of tasks in computer vision,
bioinformatics, and natural language processing. In all of these
applications, given an input sequence x = (x1, ..., xT ), a
standard recurrent neural network computes the sequences
of hidden vectors h = (h1, ..., hT ) and output vectors z =
(y1, ..., yT ) by recursively evaluation the following equations
from time steps t = 1 to t = T :

ht = fact(wxhxt + whhht−1 + bh) (1)
zt = whyht + by (2)

w denote the weight matrices, b the bias vectors and fact the
activation function of the hidden layer, often chosen to be the
sigmoid, tanh or sign function. Our binarized BLST-RNN uses
the sign function. However, standard RNNs tend to suffer from
the vanishing gradient problem [26], thus limiting their access
to long time lags. Therefore, the Long Short-Term Memory
(LSTM) model [23] was developed to better find and exploit
long-range context using special memory cells.

In order to exploit the temporal dependencies within the
movement data each LSTM cell (unit) keeps track of an
internal state (the constant error carousel) that represents
its ”memory”. Each memory block contains one or more
recurrently connected memory cells and three multiplicative
units, the input, output, and forget gates, which control the
information flow inside the memory block. The surrounding
network can only interact with the memory cells via the
gates. In other words, these gates and the memory cell
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allow an LSTM unit to adaptively forget, memorize and
expose the memory content. Leading to a network model
capable of retaining information across hundreds of time-steps.
One shortcoming of conventional RNNs is that they are only
able to make use of the previous context. In motion detection
especially in HAR, where an input with a fixed length is
analyzed at once, there is no reason not to exploit future
context as well. Bidirectional RNNs (BRNNs) [27] do this by
processing the data in both directions. They use two separate
hidden layers, which feed the data backwards to the same
output layer. A BRNN computes the forward hidden sequence−→
h , the backward hidden sequence

←−
h and the output sequence

y by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T . At the end, the output layer is updated.
Combining BRNNs with LSTM gives bidirectional LSTM [28]
which can access long-range context in both input directions.
By resorting to bidirectional networks true online processing
is impossible, due to the need for a complete data sequence.
However, for the action recognition task it is sufficient to
obtain an output at the end of a fixed motion sequence. So
that both passes, forward and backward, can be used during
the recognition process. For the evaluation process described
in this paper, we follow the implementation presented in [29].

IV. BINARIZED NEURAL NETWORKS

Each iteration of training an RNN involves three steps;
forward pass, backward pass, and parameter update. In this
section, we detail our binarization function, show how we
use it to compute the parameter gradients, and how we
backpropagate through the network.

A. Training Bitwise Neural Networks

It has long been known that any boolean function, which
takes binary values as input and produces binary outputs
as well, can be represented as a bitwise network with one
hidden layer [13], for example, by merely memorizing all the
possible mappings between input and output patterns. Based
on the idea, we train a BLSTM-RNN with binary weights.
However, we only binarize the weights during the forward and
backward pass. For updating the parameters, we use the high
precision (real-value) weights. Because in gradient descend
the parameter changes are tiny, binarization after updating the
parameters ignores these changes and the training objective
can not be improved. We also use the high precision (real-
value) parameter for the LSTM-Layer in the forward pass as
in the backward pass. Because the changes are also tiny and
a representation using binary values, significant ignores these
changes. Algorithm 1 demonstrates our procedure for training
an RNN with binary weights.
First, we binarize the weights at each layer by computing
B and α. Next we call the forward method using binary
weights and its corresponding scaling factors for the non-
LSTM layer and the high precision (real-value) weights for
the LSTM layer. Afterwards, we call the backward algorithm,
where the gradients are computed with respect to the estimated
weights. Lastly, the network parameters and the learning rate

are updated according to the architecture and optimizer. Note,
that once the training finished, there is no need to keep the real-
valued weights for the non-LSTM layer, since we only need
all real-valued weights in the backward and update process.

Algorithm 1 Train an B-BLSTM-RNN with binary weights
and binary activations

Input: input and target (I, T), weight Wt

Output: updated weight Wt+1:
1: Binarize weights Wt:
2: α = ‖Wt‖
3: B = sign(Wt)

4: W̃ = αB
5: Forward(I, α, B, Wt) . Standard forward propagation

except that the weights and activations of the non-LSTM
layer are binary.

6: Backward(W̃ , E) . Standard backward propagation
except that the gradient are computed with W̃ instead of
Wt.

7: UpdateParameters() . Update weights and learning
parameter.

B. B-BLSTM-RNN

We follow the representation porposed by [30] and represent
an L-layer BLSTM-RNN as a triplet (I,W, ∗). Where L is
the number of layer, I a set of vectors, where each element
I = Il(l=1,...,L) is the input vector for the l’th layer of the
B-BLSTM-RNN. W is a set of matrices, where each matrix
W =Wl(l=1,...,L) is the weight in the l’th layer of the network.
Further, represents ∗ the dot-product between the binary input
I and the binary weight W . Note that in our description, we
suppress the bias terms and sample time (t = 1 to t = T ) for
the notational convenience.

C. Estimating Binary Weights

In order to constrain a BLSTM recurrent neural network
with binary weights, we estimate the real-value weights W
∈ W using a binary weight W ∈ {+1,−1} and a scaling factor
α ∈ R+ such that W ≈ αB. So that the matrix multiplication
between two layer can be approximated by:

I ∗W ≈ (I⊕ B)α (3)

We use bold characters for a vector or a matrix and non-
bold characters for a scalar parameter, and ⊕ stands for the
bitwise XNOR operation. For the approximation we follow the
approach proposed by [30]:

α = ‖W‖ (4)
B = sign(W) (5)

In order to transform the real-valued variables into a binary
representation, we use the deterministic sign functions as
proposed in [31]:
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zli = sign(ali)

{
+1 if x ≥ 0

−1 otherwise
(6)

D. Estimating Binary Activations and Error

We define the binary activation procedure as follows based
on the assumption that we have a network with binary weights:

ali = bli

Kl−1∑
j

wl
i,j ⊕ zl−1

j (7)

zli = sign(ali) (8)

where wl
i,j ∈ W and l indicates a layer and j, i the input

and output units of an specific layer, respectively. Kl is the
number of input units at the l’th layer. We can check the
prediction error E by measuring the bitwise agreement of
target vector t and the output units of l’th layer using XNOR
as a multiplication operator:

E =

KL+1∑
i

(1− ti ⊕ zL+1
i )

2
(9)

Note that we use {+1, −1} as representation since it is more
flexible when examining the network behavior, but when it
comes to the implementation +1 stands for the ”TRUE”,
while 1 stands for ”FALSE” or 0/1 respectively. So that the
activation is equivalent to counting the number of 1’s and then
checking if the accumulation is bigger than half of the number
of input units plus 1. With the result, that we can substitute
any multiplication with faster binary multiplications.

V. EXPERIMENTS

We now turn to present some experiments, which demon-
strate the performance of the Binarized-BLSTM-RNN model.
For comparison, we also implemented the standard BLSTM-
RNN model, a Multilayer Perceptron (DNN), Dynamic Time
Warping (DTW), and a Hidden-Markov model(MHMMR) ,
using several different training parameters, as well as a number
of training iterations. Note that all algorithms were initialized
from the same random vector, chosen uniformly at random to
make the comparison as comparable as possible.

A. Experimental Setup

The next thing to consider is the empirical performance of
the proposed model. In our experiments, we evaluated and
compared the proposed model with the following methods:

B-LSTM-RNN & BLSTM-RNN: We use the same net-
work architecture for the binarized and the standard LSTM
recurrent neural network. The input data fed into the network
corresponds to frames of movement data. Each frame consists
of a number of s samples, which are simply concatenated
into a single vector. Notice that both systems rely only on
the calibrated sensor data, without any additional feature ex-
traction in opposition to most state-of-the-art methods. These

data are linearly normalized between −1 and +1 according to
the maximum value that the sensors can provide. The forward
and backward LSTM hidden layers are fully connected to the
input layer and consist on five LSTM neurons each with full
recurrent connections. The SoftMax activation function was
used for the output-layer to give network responses between
0 and 1 at every time-step. Normally, these outputs can be
considered as posterior probabilities of the input sequence
to belong to a specific motion class at a given time-step.
Following Zaremba et al. [32], we used the mixed curriculum
strategy to model our network.

DNN: We implemented a deep feed-forward network, with
five hidden layers followed by a softmax-layer. We have
chosen the architecture so that the DNN based approaches have
almost the same number of parameters as the RNN approach.
Each hidden layer contains the same number of units and
corresponds to a linear transformation and a rectified-linear
activation function. We also used Dropout during the training
phase. The input data fed into the network corresponds to
frames of movement data. Each frame consists of a number of
s samples, which are simply concatenated into a single vector.
We minimized the negative log likelihood using RMSprop
[33].

DTW: The DTW approach is an ensemble classifier based
on Dynamic Time Warping (DTW) as proposed by D. McG-
lynn et al. [34]. The basic idea is to split up the training data
for the system into a set of short time samples for each sensor
and each activity, which are used as templates for the DTW
approach. The time series for each sensor are classified by
assessing their similarity to these templates. To get the final
classification, results from separate classifiers are combined.

MHMMR: The Multiple Hidden Markov Model Regression
(MHMMR) [35] approach uses the maximum likelihood as a
decision rule as almost all HMM-based approaches. However,
it’s main advantage over traditional approaches, comes from
the fact that the statistical model explains the regime changes
over time through the hidden Markov chain, where each
regime is interpreted as an activity.

VI. DATASETS

We perform the experiment on several typical datasets and
also created our own dataset for the performance comparison.
Below we detail each dataset:

Opportunity dataset: The Opportunity dataset [36] con-
tains human activities recorded from on-body sensors from 4
participants. Two types of recording sessions were performed.
A Drill sessions where the subject performed a pre-defined
set of activities 20 times (e.g. open/close the fridge or toggle
the lights on/off) and a ”daily living activities” run where the
participants performed high-level task (wake up, groom, pre-
pare breakfast, clean) with more freedom about the sequence
of individual activities. We used a subset of the dataset and
only used data from sensors that did not show any packet-
loss. Which included accelerometer recordings from the upper
limbs, the back, and complete IMU data from both feet. We
used run 2 from subject 1 as our validation set, and replicate



2016 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 4-7 OCTOBER 2016, ALCALÁ DE HENARES, MADRID,
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dataset Opportunity PAMAP2 Custom
configuration C1 C2 C3 C1 C2 C3 C1 C2 C3

BLSTM-RNN 0.74 ±
0.21%

0.78 ±
0.18%

0.78 ±
0.16%

0.90 ±
0.15%

0.93 ±
0.22%

0.93 ±
0.91%

0.79 ±
0.76%

0.81 ±
0.46%

0.83 ±
0.60%

B-BLSTM-RNN 0.71 ±
0.33%

0.76 ±
0.16%

0.76 ±
0.15%

0.88 ±
0.21%

0.92 ±
0.21%

0.91 ±
0.94%

0.76 ±
0.54%

0.79 ±
0.33%

0.81 ±
0.44%

DNN 0.68 ±
0.40%

0.74 ±
0.90%

0.76 ±
0.27%

0.86 ±
0.21%

0.89 ±
0.23%

0.91 ±
0.81%

0.73 ±
0.51%

0.74 ±
0.33%

0.79 ±
0.81%

DTW 0.72 ±
0.71%

0.71 ±
1.15%

0.69 ±
0.15%

0.87 ±
2.01%

0.78 ±
0.98%

0.74 ±
0.99%

0.75 ±
1.20%

0.69 ±
0.93%

0.65 ±
0.94%

MHMMR 0.73 ±
0.62%

0.71 ±
2.11%

0.70 ±
0.91%

0.89 ±
1.01%

0.88 ±
0.99%

0.84 ±
0.99%

0.76 ±
2.20%

0.72 ±
0.92%

0.69 ±
1.94%

TABLE I: Recognition error and standard deviation, for individual configurations, datasets and methods.

the most popular recognition challenge by using runs 4 and
5 from subject 2 and 3 in our test set. The remaining data is
used for training.

PAMAP2 dataset: The PAMAP2 Physical Activity Mon-
itoring dataset [37] contains data of 18 different physical
activities (e.g. walking, cycling, playing soccer), performed by
9 participants recorded by 3 inertial measurement units (Ac-
celerometer, gyroscope, magnetometer) located on the hand,
chest and ankle over and a temperature and heart rate sensor.
We used run 1 and 2 for subject 5 in our validation set and
run 1 and 2 for subject 6 in our test set. The remaining data
is used for training.

Custom dataset: Our dataset [10] was obtained using a
foot mounted IMU (3D-gyroscope, 3D-accelerometer, 3D-
magnetometer). The ground truth data was obtained by man-
ually labeling the data based on a down facing hand-held
camera to note the exact time when the activity was performed
and which activity was performed. 22 participants, from 20
to 55 years old, performed 15 times each, one of the 14
different activities (e.g. walking, running, open door). The
sampling time for accelerometer and gyroscope capture is
100Hz. The 14 gestures are divided into 2 families: linear
gestures (e.g. walking, running) and non-linear gestures (e.g.
jumping, falling). These choices make the dataset difficult.
As the datasets are highly biased we require a performance
metric that is independent of the class distribution. We estimate
the mean f1-score:

Fm =
2

|c|
∑
c

precisionc · recallc
precisionc + recallc

(10)

where c is the current class and |c| is the total number of
classes.

A. Classification Results

We use 3 different configurations to compare our Binarized
BLSTM-RNN to 4 to state-of-the-art solutions: BLSTM-RNN,
DNN, DTW, and MHMMR. In all experiments, we use raw
MEM information for the LSTM and DNN based solutions
and gestural features for the DTW and MHMMR method.
We also used a 3-fold cross-validation for all experiments.
The first configuration (C1) corresponds to the personalization
paradigm, where only one user is considered with few learning

examples. For this configuration, we only used gestures of
a single participant in the learning phase, and a subset of
the same dataset for the test phase. The second configuration
(C2) uses data from all participants in the learning phase
and a subset of the same dataset for the test phase. This
case corresponds to a multi-user system and a closed world
paradigm. The third configuration (C3) is composed of all
samples from all participants and the test data uses the other
available gestures from unknown users, respectively data from
participants that weren’t used in the training phase. This case
is close to a real system trained with a few examples; having
to generalize to new users who want to use it without any
personalization phase. This configuration represents the open
world paradigm. Table I outlines the performance of each
classifier for the different configurations.

The binarized BLSTM-RNN achieves almost every time
the second best performance in every configuration. In fact,
with the exception of minor residual noise introduced by the
binarization process, the binarized BLSTM-RNN is almost
identical to the non-binarized BLSTM-RNN model. Another
observation is that the binarized BLSTM-RNN algorithm tends
to perform better than any non-recurrent algorithm evaluated,
despite the fact that we used binary parameter and high preci-
sion (real-value) parameter for the internal LSTM operations.
There are multiple potential explanations for this phenomenon:

• The network architecture mainly relies on the high pre-
cision LSTM-cell, to achieve high accuracies.

• The model is able to generalize even with binarized
weights and parameters.

Note that the binarized BLSTM-RNN achieves the second best
performance in almost every configuration and outperforms the
other method by a larger margin.

B. Computing Times

The results for the computing times (mean over 10 trails)
are summarized in table II and detailed for the custom dataset.
The table also provides the standard deviation of the com-
puting times during the evaluation for the proposed model B-
BLSTM-RNN, BLSTM-RNN, DNN, DTW, and MHMMR. As
would be expected for the different algorithms. The prediction
method for all deep learning and HMM-based approaches
aren’t bound to the dataset size, so larger datasets (such as
C2) tend to provide larger speedups compared to the smaller
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datasets (C1). On the contrary, DTW needs to compare the
input gesture with all learned references samples. That is why
the computing time increases in mean from 14.45 ms for C1
(less samples) to 51.71ms for C3 (more learning sample).
Consequently, the Binarized BLSTM-RNN achieves the best
performances in the multi-user configuration with a computing
time independent from the training dataset size.

configuration C1 C2 C3
B-BLSTM-RNN 13.34 ± 0.04 12.89 ± 0.09 13.98 ± 0.09

BLSTM-RNN 54.32 ± 0.02 52.07 ± 0.02 51.22 ± 0.06
DNN 35.12 ± 0.03 34.89 ± 0.06 35.09 ± 0.03
DTW 14.45 ± 0.02 39.53 ± 0.45 51.71 ± 0.35

MHMMR 44.53 ± 1.84 25.91 ± 2.42 33.19 ± 1.44

TABLE II: Computing times / prediction times (in ms) for
the custom dataset, individual configurations and methods to
classify one unknown activity.

Another observation is that the proposed method scales better
(in terms of runtime and memory) than the other algorithms.
These results show that our algorithm satisfies its original
goals: to be able to scale effectively in resource-constrained
situations, particularly in cases where floating-point / fixed-
point variables and operations are prohibitively expensive.

VII. CONCLUSION AND OUTLOOK

One of the major shortcomings when using state-of-the-art
deep neural networks for activity recognition is the lack of
resources in embedded and mobile systems. By explicitly
addressing this shortcoming we have demonstrated the
suitability of using a binary representation of the BLSTM
recurrent neural network. Leading to a system, in which
both the activations and the weights are constrained to either
1 or +1. With the result, that most of the floating point
multiply-accumulations are replaced by 1-bit XNOR-count
operations. Since our proposed binarized recurrent model is
flexible, powerful, and efficient, we believe that it may be a
promising approach for tackling other challenging tasks on
power and performance constrained systems.

Despite this, there are still several extensions and
improvements that may be performed but are not described
in detail here:

• Provable worst-case runtime bounds. A relationship be-
tween the properties of the model architecture and the
runtime may be derived, from the binarization strategy
and data size.

• Focus on the imbalance problem caused by the distortions
existing in the dataset as well as improving the sensor
data calibration.

• Investigate the effect of feature selection more deeply,
which might lead to a more generalized system.

• Perform more in-depth experiments with Binarized
BLSTM-RNNs and combinations of Binarized BLSTMs
with convolutional neural networks. Following the goal

to improve the overall system accuracy by combining all
advantages.
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[24] R. Józefowicz, W. Zaremba, and I. Sutskever, “An em-
pirical exploration of recurrent network architectures,”
in Proceedings of the 32nd International Conference on
Machine Learning, ICML 2015, Lille, France, 6-11 July
2015, 2015, pp. 2342–2350.

[25] N. Y. Hammerla, S. Halloran, and T. Ploetz, “Deep,
convolutional, and recurrent models for human activity
recognition using wearables,” Ijcai, 2016.

[26] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmid-
huber, “Gradient flow in recurrent nets: The difficulty
of learning long-term dependencies,” in, Kremer and
Kolen, Eds., IEEE Press, 2001.

[27] M. Schuster and K. Paliwal, “Bidirectional recurrent
neural networks,” Trans. Sig. Proc., vol. 45, no. 11,
pp. 2673–2681, 1997.

[28] A. Graves and J. Schmidhuber, “Framewise phoneme
classification with bidirectional LSTM and other neural
network architectures,” Neural Networks, vol. 18, no.
5-6, pp. 602–610, 2005.

[29] A. Graves, A. Mohamed, and G. E. Hinton, “Speech
recognition with deep recurrent neural networks,”
CoRR, 2013.

[30] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi,
“Xnor-net: Imagenet classification using binary convo-
lutional neural networks,” CoRR, 2016.

[31] M. Courbariaux, Y. Bengio, and J. David, “Low preci-
sion arithmetic for deep learning,” CoRR, 2014.

[32] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent
neural network regularization,” CoRR, 2014.

[33] T. Tieleman and G. Hinton, Lecture 6.5—rmsprop:
divide the gradient by a running average of its recent
magnitude, COURSERA: Neural Networks for Machine
Learning, 2012.

[34] D. McGlynn and M. G. Madden, “Research and de-
velopment in intelligent systems xxvii: Incorporating
applications and innovations in intelligent systems xviii
proceedings of ai-2010, the thirtieth sgai international
conference on innovative techniques and applications
of artificial intelligence,” in, M. Bramer, M. Petridis,
and A. Hopgood, Eds. London: Springer London, 2011,
ch. An Ensemble Dynamic Time Warping Classifier
with Application to Activity Recognition, pp. 339–352.

[35] D. Trabelsi, S. Mohammed, F. Chamroukhi, L. Oukhel-
lou, and Y. Amirat, “An unsupervised approach for
automatic activity recognition based on hidden markov
model regression.,” CoRR, 2013.

[36] D. Roggen, A. Calatroni, M. Rossi, T. Holleczek, K.
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